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Abstract. The steady withdrawal of an inviscid fluid of finite depth into a line sink is considered for the case
in which surface tension is acting on the free surface. The problem is solved numerically by use of a boundary-
integral-equation method. It is shown that the flow depends on the Froude number,FB = m(gH3

B
)−1/2, and the

nondimensional sink depthλ = HS/HB , wherem is the sink strength,g the acceleration of gravity,HB is the
total depth upstream,HS is the height of the sink, and on the surface tension,T . Solutions are obtained in which
the free surface has a stagnation point above the sink, and it is found that these exist for almost all Froude numbers
less than unity. A train of steady waves is found on the free surface for very small values of the surface tension,
while for larger values of surface tension the waves disappear, leaving a waveless free surface. It the sink is a
long way off the bottom, the solutions break down at a Froude number which appears to be bounded by a region
containing solutions with a cusp in the surface. For certain values of the parameters, two solutions can be obtained.
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1. Preliminary discussion

There are a number of problems involving withdrawal of water from lakes or reservoirs, either
from single layers or from one of several layers of different density which impinge on such
questions as water quality and reservoir management [1]. It has long been known that when
water is withdrawn from a basin containing several layers of different density, the water flows
from the layer adjacent to the outlet until some critical flow rate is exceeded, after which
water flows from both (or several) layers (seee.g. [2–7]). Experiments and semi-analytical
and numerical solutions of this problem have given different values for this critical withdrawal
flow rate, often with quite a large variation in values for the same geometric configuration.
This is true in the case of both two-dimensional withdrawal (slot or line sink), and in the case
of three-dimensional withdrawal (pipe or line sink). The reason for these discrepancies is still
unclear, despite a great deal of work.

The flow under consideration can be characterized by the Froude number

FSP = m√
gH 3

.

Herem is the strength of the line sink (i.e. the flux in the far field),g is gravity,H is the
distance between the bottom of the fluid and the stagnation level of the free surface in the
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Figure 1. The two main free-surface shapes for flow into a line sink from a layer of finite depth.

absence of surface tension. The average upstream depth is given byHB = H(1− γ ), so that
the usual depth-based free-stream Froude number is

FB = FSP

(1− γ )3/2 .

The Froude numberFB determines whether or not there can be waves on the free surface. The
linear theory of water waves shows that, ifFB < 1, then waves can occur on the free surface
of a running stream, while ifFB > 1, waves are not possible. Flows withFB < 1 and FB > 1
are called subcritical and supercritical, respectively, for this reason. This distinction is based
on linear theory. The terms subcritical and supercritical are also commonly used in nonlinear
theory, although nonlinear waves are possible, not only forFB < 1, but also for 1< FB < 1·3
(the value 1·3 corresponds to the highest solitary wave).

Solutions of the steady flow with a cusp on the interface or free surface [2, 8–12] (see
‘Cusp solution’ in Figure 1) have long been thought to correspond to the critical drawdown
value; if the flow rate was increased, the water above the interface would begin to flow out.
Tuck and Vanden-Broeck [11] obtained numerically such a ‘cusp solution’ for a line sink
in water of infinite depth (i.e. H → ∞). They found a unique solution, atFS = 12·622,
whereF 2

S = m2/gD3
S is a Froude number based on the sink depth,DS. Hocking [13] recently

provided strong evidence that this solution is the critical value for this case of ‘infinite’ depth.
As the flow rate was decreased, the solutions obtained approached the single-layer solutions
of Tuck and Vanden-Broeck [11]. In addition to these papers Hocking [8] computed solutions,
similar to those of Tuck and Vanden-Broeck [11], but in which there was a boundary beneath
the sink sloping away without bound. These solutions again occurred at a unique Froude
number for each angle. The result, when the angle of the wall is 30◦ downward, matches an
exact solution first obtained by Sautreaux [10], and subsequently by Craya [2].

However, for two-dimensional withdrawal, when the fluid is of finite depth, there is a range
of flow rates over which the cusp solutions exist for identical geometry, and even the smallest
of these flow rates is much larger than the critical drawdown values observed experimentally,
e.g.[3, 5]. In addition, there are two branches of solution with a cusp, only one of which exists
for values ofFB < 1. This subcritical branch, obtained by Vanden-Broeck and Keller [12],
provides a unique solution for a given geometry providedFB < 1, but only occurs when the
line sink is a long distance above the bottom,i.e.greater than≈ 60% of the total fluid height.
This branch has the solution of Tuck and Vanden-Broeck [11] as a limiting case as the fluid
depth increases and is therefore a likely candidate for the critical flow. Vanden-Broeck [14]
and Hocking and Vanden-Broeck [15] examined this branch carefully and found that solutions
with waves can be obtained over a narrow range either side of the waveless solutions.

‘Stagnation point’ solutions (see Figure 1), in which the free surface rises up to a stagnation
point above the sink, were first obtained by Peregrine [16] and Hocking and Forbes [17].
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Forbes and Hocking [18] found stagnation-point solutions that include the effects of surface
tension. They were able to demonstrate some non-uniqueness in the solution domain. Further
stagnation-point solutions, but in fluid of finite depth, were obtained by Mekias and Vanden-
Broeck [19, 20] and Vanden-Broeck [21]. These solutions were found to contain waves on
the surface right up toFB = 1 in most cases. They also obtained stagnation-point solutions
without waves forFB > 1 up to a limiting value. Hocking and Forbes [22] also found solutions
in the rangeFB < 1, but were unable to obtain waves, and found their solutions limited at
aroundFB = 0·24.

The uncertainty surrounding the details of these withdrawal flows makes it necessary to
examine them in greater detail in order to obtain a clearer understanding of their behaviour,
with the ultimate goal of understanding the process of critical drawdown. In this paper we will
concentrate on the subcritical(FB < 1) solutions which contain a stagnation point on the free
surface and which are influenced by the effects of surface tension. The regions in parameter
space in which such solutions exist will be mapped and related to the other known solutions.
The results provide an interesting insight into the nature of these withdrawal problems. No
attempt will be made to look at the full unsteady problem, which has been considered recently
by other researchers [23, 24].

In Section 2 of this paper we will formulate the problem as a nonlinear, singular integral
equation. In Section 3 we briefly examine the behaviour near to the stagnation point and
Section 4 describes the method of numerical solution. The results are described and discussed
in Sections 5 and 6.

2. Problem formulation

The steady, irrotational motion of an inviscid, incompressible fluid due to a submerged sink
is to be examined. The flow is assumed to be two-dimensional and gravity is acting vertically
downwards (see Figure 1), Surface tension is assumed to be acting on the free surface, We
concentrate in this paper on subcritical flows for which waves can be present on the free
surface, and for which the free surface is horizontal directly above the sink.H is defined to
be the height of the stagnation level of the free surface, andHB = H(1− γ ) is the depth
upstream in the fluid. If waves are present, this is taken to be the average depth. The average
velocityU in the far field is then defined byU = m/H . We choose Cartesian coordinates so
that the bottom is aty = −H , and the sink is atx = 0, y = −H +HS . The stagnation point
is atx = 0, y = 0 provided the surface tension is zero, but if the surface tension is not zero,
the level of the free surface at the stagnation point may drop belowy = 0. In the formulation
given here we will use the symmetry of the flow aboutx = 0, and solve for only the left-hand
half of the flow.

Let z = x+ iy be the physical plane (see Figure 2(a)). The mathematical problem is to find
a complex potentialw = φ(x, y)+ iψ(x, y),which is analytic in the flow domain and satisfies
the conditions of no flow across the solid boundaries. Without loss of generality, we choose
ψ = 0 on the free surface andφ = 0 at the stagnation point above the sink. The surface of the
water must also be at constant pressure, a condition provided by Bernoulli’s equation, which,
if we nondimensionalise with respect to the velocityU = m/H and the depthH , takes the
form

η + 1
2F

2
SP q

2 − βη′′

(1+ η′2)3/2 = 0, (1)
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Figure 2. Mapped planes used in the problem formulation; (a) the physicalz-plane, (b) the complex velocity
potentialw-plane, and (c) the upper-halfζ -plane.

wherey = η(x) is the equation for the elevation of the free surface,q is the fluid velocity,
andFSP is the Froude number defined above. The final term on the left side represents surface
tension, whereβ = T /(ρgH 2) is a nondimensional surface-tension parameter (Tbeing the
dimensional value of the surface tension). Note that the upstream depth of the fluid is(1− γ )
and the upstream velocity is 1/(1 − γ ), so that the dimensionless flux is one. The relative
height of the sink to the upstream depth isλ = HS/HB = HS/(H(1− γ )).

Since the only term involving the velocity is squared, the equations are independent of the
direction of the flow and therefore solutions are equally valid for a flow into (sink) or out
(source) of the slot. However, we will discuss the flow as if it were into a sink.

To derive an integral equation for this problem we follow a procedure similar to that used
in Hocking [9]. The transformation

e−πw = ζ (2)

maps the infinite strip betweenψ = −1 andψ = 0 in thew-plane to the upper-half of the
ζ -plane as shown in Figure 2(b). The pointζ = 0 corresponds to the location of the sink, so
that the free surfaceCI lies along the realζ -axis whereζ > 1. The line betweenζ = 0 and
ζ = 1 corresponds to the vertical wall above the sink, or to the line of symmetry of the flow if
both sides are being considered.

The points betweenζ = 0 and ζ= ζB correspond to the vertical wall beneath the sink,i.e.
the line of symmetry of the flow, andζ < ζB to the bottom of the channel, which goes away
horizontally tox = −∞. The flow domain is the upper halfζ -plane (see Figure 2(c)). The
case in whichζB = 0 corresponds to the case of a line source or sink on the bottom of the
channel.

We define a new function�(ζ) = δ(ζ ) + iτ(ζ ), related to the complex conjugate of the
velocity field by

w′(z(ζ )) = u− iv =
(

1

1− γ
)

e−i�(ζ), (3)

where the prime denotes differentiation with respect toz, andu andv are the horizontal and
vertical components of fluid velocity.

The magnitude of the velocity at any point is then given by|w′(z)| = eτ (ζ )/(1− γ ), and
the angle any streamline makes with the horizontal isδ(ζ ). Since the total flux is one, and
the upstream fluid depth approaches(1− γ ), τ → 0 as|ζ | → ∞, i.e. the upstream velocity
approaches 1/(1− γ ).
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On the solid boundaries of the flow domain, the flow must follow the walls, so we choose
δ(ζ ) to be the angle of the wall to the horizontal, that is

δ(ζ ) =


0 if −∞ < ζ < ζB,

π/2 if ζB < ζ < 0,

−π/2 if 0 < ζ 6 1,

unknown if 1< ζ <∞.
(4)

Note thatδ is unknown on 1< ζ <∞ because this is the free surface.
Following the procedure presented in [9], we can apply Cauchy’s integral formula to�(ζ)

on a path consisting of the realζ -axis, a semi-circle of radius|ζ | → ∞ in the upper-half
plane, and a circle of vanishing radius about the pointζ . Substituting the known values ofδ
and taking the imaginary part, we obtain

τ(ζ ) = 1
2ln

[
(ζ − 1)(ζ − ζB)

ζ 2

]
− 1

π
−
∫ ∞

1

δ(ζ0)

ζ0− ζ dζ0. (5)

The equation for constant pressure on the free surface, which we can obtain by combining
Equations (1), (2) and (3) on 16 ζ <∞ is

η(1)+ (1− γ )
π

∫ ζ

1

e−τ (ζ0) sinδ(ζ0)

ζ0
dζ0+ 1

2F
2
SP

e2τ (ζ )

(1− γ )2 +
βπζ eτ (ζ )

1− γ
dδ

dζ
= 0. (6)

Using (5) and (6) on the free surface, we get a singular nonlinear integral equation forδ(ζ ) on
1 6 ζ < ∞. Usingδ andτ , we can integrate (3) to obtain the location of points on the free
surface. These may be written as

x(ζ ) = −(1− γ )
π

∫ ζ

1

e−τ (ζ0) cosδ(ζ0)

ζ0
dζ0, (7a)

and

η(ζ ) = η(1)− (1− γ )
π

∫ ζ

1

e−τ (ζ0) sinδ(ζ0)

ζ0
dζ0. (7b)

Note that, if there is no surface tension(β = 0), thenη(1) = 0, but if β 6= 0, then Equation
(1) gives that

η(1) = βη′′(1)
(1+ η′(1)2)3/2 . (8)

3. Behaviour near the stagnation point

An interesting aside is that forFSP = 0, Equation (1) provides an exact solution, for any value
of β, of the formη(s) = −β1/2 sinθ0 e−β−1/2s whereθ0 is the angle of the free surface at the
stagnation point, ands is the arclength along the free surface. In this situation, with zero flow
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velocity, these solutions represent a meniscus at the attachment point, and they can have any
angle,θ0. This leads us to question whether this is possible if the flow rate is not zero. Tuck
and Vanden Broeck [11] showed that ifβ = 0 the free surface must be perpendicular to the
wall at the attachment point.

In the variables defined above, we can differentiate Equation (6) with respect toζ , giving

(1− γ )e−τ (ζ ) sinδ(ζ )

πζ
+ F

2
SP e2τ (ζ )τ ′(ζ )
(1− γ )2

+βπ eτ (ζ )

(1− γ ) [δ
′(ζ )+ ζ δ′′(ζ )+ ζ τ ′(ζ )δ′(ζ )] = 0. (9)

Multiplying by eτ ζπ/(1− γ ) gives

sinδ(ζ )+ πF 2
SP ζ

e3τ (ζ )

(1− γ )3τ
′(ζ )

+βζ
(

π

1− γ
)2

e2τ (ζ )[δ′(ζ )+ ζ δ′′(ζ )+ ζ τ ′(ζ )δ′(ζ )] = 0. (10)

Noting that ifζ → 1, and if the angle at the stagnation point isδS , we have

τ(ζ )→ (ζ − 1)1/2+δS/π

and

τ ′(ζ )→
1
2 + δS/π
(ζ − 1)

,

so that in the limit asζ → 1+,

sinδS + πF 2
SP

(1− γ )3(
1
2 + δS/π)(ζ − 1)(1/2+3δS/π)

+ βπ2

(1− γ )2 [(δ
′(1)+ δ′′(1))(ζ − 1)1+2δS/π + δ′(1)(1

2 + δS/π)(ζ − 1)2δS/π ] ≈ 0. (11)

This equation only has finite solutions ifδS > 0, and, ifδS > 0, then all terms are zero, so
that we must have sinδS = 0. Thus, it seems that, even with surface tension in the equations,
the free surface must be perpendicular at the attachment point. Note that the caseFSP = 0 is
a singular limit in this formulation, because we can no longer use the mapping (3) in the same
way. That is why we do not recover the exact solution given above whenFSP = 0.

4. Numerical solution

No closed-form solution is known for the full nonlinear system of equations given by (5) and
(6) (except for the caseF = ∞, β = 0, seee.g.[12], andF = 0 as described above), but it
can be solved quite well by means of collocation.

The numerical scheme is very similar to that of [15], and so we only briefly describe
it here. The behaviour ofζ is like eφ , so we choose to make the transformationζ = eα.
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Points were chosen atN equally spaced values ofα up toαt , a truncation at sufficiently large
ζt = eαt . The integral equation consisting of (5) and (6) was evaluated at the mesh pointsαj ,
for j = 2,3, . . . , N , givingN − 1 equations for the unknown valuesδj , j = 2,3, . . . , N and
the free-stream depth upstreamγ . The value ofδ1 is known to be zero, since the free surface
is assumed to be horizontal at the stagnation point. Thus, we haveN − 1 equations for theN
unknowns. We can ensure that the distance from the bottom to the stagnation point is correct
by using a variation on Equation 7(b),

1− η(1) = −(1− γ )
π

∫ 1

ζB

e−τ (ζ0) sinδ(ζ0)

ζ0
dζ0. (12)

This is now a closed system ofN equations forN unknowns and, given an initial guess, we
can solve this using a Newton–Raphson iteration scheme. However, in this formulation the
sink depth comes out of the solution as an output. This turns out to be important later, but on
some occasions it is desirable for us to be able to specify the sink depth, and we may do this
by including an extra equation similar to (12), but for the sink hight only, and makingζB the
extra unknown.

Care must be taken in evaluating the Cauchy Principal Value integral in Equation (5),
as described in [15]. A trapezoidal-rule integration scheme was found to be sufficient for all
calculations, and a step size of around1α = 0·05 was required for us to get solutions accurate
to two-to-three figure accuracy using around 400 points on the surface.

Given a reasonable starting guess forδ and γ , this scheme converged rapidly, usually
taking only 4 or 5 iterations. The initial guessδ(ζ ) = 0, γ = 0 was good enough for most
situations, especially small values ofFSP . Once a solution was obtained for a particular case,
it was used as a starting guess for other cases, for example for increasing values of the Fronde
number. We tested the method by comparing the solutions with those obtained by Mekias and
Vanden-Broeck [20] and Vanden-Broeck [21] with zero surface tension.

5. Results

Solutions were computed for a range of values of Froude number, surface tension and sink
height. Generally, the solutions were found to depend on all three parameters. In cases where
surface tension was small, the solutions included waves on the free surface asFB was in-
creased, very similar to those of Mekias and Vanden-Broeck [20]. However, as the surface
tension was increased, the waves decreased in amplitude and eventually disappeared com-
pletely, leaving a waveless free surface for larger values of surface tension. Figure 3 shows
two typical solutions with the same values ofFB andλ (sink height) for different values of
surface tension. The effect mentioned is clear in this case.

In almost all cases solutions were obtained up to a limiting depth-based Froude number
FB . Table 1 shows the limiting value ofFB for different sink heights forβ = 0·1, typical
of the behaviour at all values ofβ. Figure 4 shows the limiting values of Froude number
for different sink heights at different values of the surface tension. In most cases this limit
was close to one, but it is clear that, whenλ, the sink height, is close to one, the limiting
value for all values of surface tension (including zero) drops dramatically to sit very close
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Table 1. Maximum computed Froude number

for varying sink depths withβ = 0.1.

ζR FB(max) λ = hS/hB
−0·005 0·849 0·056

−0·050 0·849 0·174

−0·500 0·849 0·473

−4·000 0·617 0·609

−30·00 0·246 0·727

−600·0 0·075 0·839

Figure 3. Free-surface profiles for two cases with very
similar Froude numbers,FB = 0·728,0·722, and sink
height,λ = 0·2, but different values of surface tension
β = 0, 0·2. Surface tension has caused the level of the
stagnation point to drop, and completely damped out
the waves.

Figure 4. Limiting Froude numbers,FB for different
values of surface tensionβ = 0·05,0·1, 0·2 and sink
heightλ. The dashed line is the waveless solutions of
Vanden-Broeck and Keller [29].

Figure 5. Free-surface shape near the limiting form
for sink heightλ = 0·778, surface tensionβ = 0·05
and Froude numberFB = 0·2064.

to the curve depicting the cusp solutions of Vanden-Broeck and Keller [12]. Those solutions
which do contain waves appear to steepen very quickly close to the limiting value. As one
expects with nonlinear waves, the troughs get broader and the crests get narrower. The peaks
appear to sharpen, but one can only speculate that they form a 120◦ corner as they reach
a breaking-wave height. Those which approach the horizontal limits (the curve of Vanden-
Broeck and Keller [12]) depicted in Figure 4 do not appear to behave in this way. There is thus
a fundamental difference between the two kinds of solution. This highlights the importance of
the cusp solutions of Vanden-Broeck and Keller [12] when considering the critical drawdown
condition. The region in Figure 4 bounded approximately byFB = 1 and this curve would
seem to be the only region in which stagnation point solutions of any kind can exist.
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Figure 6. Two solutions for identical Froude number,
FB = 0·560, sink height,λ = 0·654 and surface ten-
sion,β = 0·05, demonstrating the non-uniqueness.

Figure 7. Plot of sink heightλ against the mapping
parameterζB for three different values ofβ = 0·05,
0·1, 0·2 showing how the non-uniqueness shown in
Figure 6 arises. The Froude number isFB = 0·560
for all cases.

Figure 5 shows a solution obtained for a sink height ofλ = 0·778, surface tension of
β = 0·05 and Froude number ofFB = 0·2064, in which the shape of the free surface appears
to be like a cusp solution, but is prevented from being so by surface tension (causing horizontal
attachment above the sink). The implications of this will be discussed later, but there is one
other aspect of the solutions which is worthy of consideration.

The mapping parameterζB , which corresponds to the point on the bottom beneath the
sink, plays a significant role in determining the height of the sink. Increasing the magnitude
of ζB generally moves the sink further off the bottom. However, it was found that increasing
the magnitude sometimes resulted in the sink height increasing to some maximum, and then
turning back and decreasing again while Froude number and surface tension remained con-
stant. This means that there is a non-uniqueness in the solutions,i.e. that for the same Froude
number, surface tension and sink height there is more than one solution. Figure 6 shows a plot
of the two free surface shapes obtained for one such case, in whichFB = 0·56,λ = 0·654 and
β = 0·05.

Figure 7 shows a plot of how this non-uniqueness arises, with the parameterζB plotted
against sink heightλ for three different values of surface tension,β = 0·05, 0·1, 0·2. In all
cases the Froude number isFB = 0·56. This non-uniqueness was noted before in the work
of Forbes and Hocking [18], and so should not be regarded as surprising, but does confirm its
existence when surface tension is present.

6. Concluding remarks

In this paper, we have used a boundary-integral-equation method to compute numerical solu-
tions to the problem of steady withdrawal from a layer of finite depth through a line sink in
which surface tension is acting on the free surface. It is shown that solutions appear to exist
over almost all of the parameter space with Froude number less than unity, except for values
close to one for some values of surface tension, and for a region which appears to be bounded
by the cusp solutions of Vanden-Broeck and Keller [12]. Figure 4 clearly shows these regions.
When this subcritical region is considered, it appears that all regions in which it is possible to
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get solutions have solutions of the stagnation-point type, except along a single limiting curve.
If the cusp solutions on this limiting curve do correspond to the critical drawdown values, then
it would not be possible to find single-layer flow solutions in the region above this curve and
belowFB = 1.
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